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FORtWORD 

This report is one of a series of related papers covering various 

aspects of a broad program to investigate the flow- field variables 
associated with hypersonic-velocity projectiles in free flight under 

controlled environmental conditions. Tuie experimental research 
is being conducted in the Flight Physics Range of GM Defense 

Research Laboratories, General Motors Corporation, and Is sup- 
ported by the Advanced Research Projects Agency under Contract 
No. DA-01-02i-AMC-U358{Z). It is Intended that this series of 

reports, when completed, will provide a background of knowledge 

of the phenomena involved in the basic study and thus aid in a 
better understanding of the data obtained in the investigation. 
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ABSTRACT 

An exact solution to th« heat conduction equation Is developed for a 
solid spherical region subjected to an arbitrary time-Independent surface 
heat flux. It Is assumed that the thermal properties are Independent of 

temperature and that no sources or sinks exist in the region. It Is shown 
that the solution Is valid for heated, cooled, or thermally Insulated regions. 

ill 
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NOMENCLATURE 

a radius of the sphere 
a     c h    , A    „ B nm*   nm'    nmf    nm' 
C!unj' Dnmj expansion coefficient* 

C specific heat 

F given constant 

g (e. 0) angular dependence of heat flux 
K thermal cowluctivlty 
M corstant 

P™ associated Legendre function 

q"a heat flux at surface of sphere 

Q heat generation per unit volume per unit time 
r nondimensional radius 
t nondimensional time 

T temperature 
x cos 8 

y space variable 

o thermal diffusivity 

ß constant, defined by Equation (7) 
P density 

£,8,0 spherical coordinates 

X . eigenvalue 

T time 

SUBSCRIPTS 
0 initial conditions 
i space coordinate 
n> m' 1 expansion indices 
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INTRODUCTION 

Transient heat conduction problems in polar spheric      oordinate systems 

are of considerable importance. One important clas« of boundary conditions for 

the epherical region is a prescribed heat flux at the surface. Since the heal 
flux during the initial phases of reentry is approximately indepsndent of time, 

th« solution to this class of problems b&a application to the transient heating 

regime of r«>«ntry vehicles. In particular, the solution of the arbitrary surface 

flux problem can be used to calculate the time for incipient phase change of 

spherical models utilized to -'4tnulate reentry In free-flight range experiments. 

The temperature distribution in a spherical region subjected to a constant heat 
flux has been reported tn References 1 and 2. However, the problem of a 

spherical region subjected to a variable surface flux has not been Investigated. 

Considerable research has been conducted concerning transient tempera- 

ture distributions in bodies undergoing phase changes. References 2 through 9, 

Including the references therein, provide a relatively comprehensive biblio- 
graphy of this subject. However, it Is to be noted that the above authors assumed 
that the transient heal conduction could be represented by a one-dimensional 

model. When the heat flux is a function of position, various sectors of the sur- 
face will reach the phase transformation stat« at different times. Hence, the 
phase transformation is further complicated by this effect, and it is important 

to b« able to evaluate the surface temperature distribution and time when this 
temperature Is first reached ai some point on the body. 

The nurpose of the present paper is to determine the exact transient tempera- 

ture distribution for a spherical region subjected to a time-in dependent surface 
heat flux that may be a function of position. The solution f% obtained for a 

material with constant thermal propsrues and a region without sources or ainks. 
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mmmm OF TIC PROBLEM 

'fhe parüai differential equation tos- heat comlustion in aa Isotropie solid, 

including the sSfects of heat generation aj"* variable thermal properties, can 

be written as 

dT 
PCTf   =  ^ (KvTz+Q^ . T) (1) 

The coordinate system for this problem is assumed to be tha region bounded by 
the sphere of radius a as shown in Figure 1. 

(C , 9, 0) 

•^ y 

Figure 1 Coordinate System 

In order to simplify the solution of Equation (1) It In assumed that: (a) the 

heat generation per unit volume per unit time is sero; (b) the thermal properties 
are constant; and (c) the boundary conditions are independent of time. 

It is assumed that the initial temperature distribution is known and that 

an arbitrary heat flux at the surface of the sphere is specified. IM xiag the 

three assumptions listed above, Equation (1) can be written as 

4JL  s a ?2T a T 
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The solution of Equation {2) is subjected to the following Initial and boundary 

conäitione 

T(C( Ö, 0S o)  = T0{C, Bs 0) (3a) 

qa n"Kl|-)        = F^e' 0) 

In Equation (3b}, F is knovn constsmt and K is the thermal conductivity of 

the maierial In order to generalize the solution of Equation (2) subjected to 

(3a) and (3b), we define the following noncUmensional uistance and time 

r  = C/a (4a) 

t =   -ir   . (4b) 

Combining Equations (2), (4a} and (4b) and expanding the Laplacian in terms of 
spherical coordinates yields 

dT    a2T    2 ox        1       a   /^ « aT\        i  ^T /S, 

ComrertiiJg the boundary conditions to tbe niiudtmensiomiized form gives 

T(r,8, 0,o) --   To(r,0, 0) (6a) 

■If I =  ßzie,*) («>) 

where 

s a 
" = " K F . (7) 

The solution of Equation (5) must also me$t the physical consL^üt that the 

temperature throughout the region is bounded for finite time. 
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It san be shown that a simple variables-separable soMloa of Equation (5) 

cannot meet all of the bounriary conditions. This implies tha; if a solution with 

separated variables is valid for the given system, the*: it must be a composite 

function. 

Assume that the solution of Equation (5) can be written in the following 

form 

Itr, 0, 0, t)  = f(t) + uir, 6, 0) + v (r, S, 0, t) . (8) 

It can be s^own that a sclution to Equation (5) that meets (6«i) and {6b) la unique. 

A mathematical-uniquenet-a proof for this system is? given by Churchill'    ' The 

physical uniqueness of the solution can also be proven by invoking the Secmd 

Law of Thtrmodynamics. Assume that T,  and T- are unique solutions to 

Equation (5) subjected to (6a) and (6b). If T.  an^ 'ig are solutions, then 

(Tj-T«) mus; also be a solution. It can be easily shown that the Second Law 

of Thermodynamics is violated if the quantity T, - TJ 1« not identically zero. 

Combining Equations (5) and (8) yields 

f^+ |v   = V2U + V2V (9) 

Let 

äF 

,2 f'(t)   =  'Zu (10) 

U-^. (ID 
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Since the right-hand si«^ of Equation (10) is «ndependent of time, the left-hand 

slie must also be independent of time. Therefore,   f(t) can be written as 

f(t) = Mt 
(12) 

where M is a constant. The boundary and initial conditions of the problem are 
satisfied by 

To(r, 6, 0)  = u(r, Ö, 0) + v^, 8, 0, o) (13) 

Equations (12, and (14) are satisfied if we arbitrarily set 

du I 

(M) 

dr 

^r 

= ^8(6, 0) (15a) 
r = 1 

lr = i im 

and 

v(r, 6, 0, o)  = To-u(r, 8, 0). (ie) 

Therefore, the solution to the initial problem is reduced to the solution of 

the following two differential equations and their corresponding initial and 
boundary conditions: 

Ff =   7   v (17a) 

subjected to 

IF |r = 1 " 0 (ITb) 

5 
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v(r, 8, 0, o) = T0-u(rf 6,0) (17c) 

and 

(18a) v2u = M 

subjected to 

du ^g(e, 0) (18b) 

A complete solution co the initial problem is obtained when the solutions a and 

v are evaluated and the constant M m Equation (12) is determined. 

SOLUTION OF POBSON'S EQUATION 

The solution of Equation (18a) c   ^e obtained by making the following 

definition: 

u(r, 8, 0) = w(r, 8, 0) + «(r) (19) 

where 

avd 

v2 u = 0 (20) 

ti       9      ' 
*   +   - *    =  M . (21) r 

Equation (21) is a second-order nonhomogeneous differential equation whose 

general solution can be written as 

*(r)    = %T2
+ -p + C2. (22) 

Since a must remain finite at the origin, the value of C.   must be identically 

zero. Arbitrarily setting the value of 4 equal to zero at the surface of the 

sphere, we obtain 

*(r)  =  J^ (r2 - 1) . (2S) 
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-The solution oi th    iti equation can be obtained by Separation of variables 

to(r, 9,0)  = R(r)e' )*(0) (24) 

Combining Equations (20) and (24) and dividing by w yields 

R"        2rR,l ,,    2v   . (1-x2)  ö  / ,, v2.äe\_     *"_ 
IK bb) 

where 

and 

x = cos 9 

m = a separation constant. 

Therefore, the so5«tion for the * function can be written as 

*(j9)  =   Icosmjj 
V'       |8inm0) m = 0,1,2 —■ 

Equation (25) nan be rewritten as 

r2R" + 2rR' + 02R = O 

and 

d (1-x2) *H^5]e=» 
where 

(27) 

(28) 

(29) 

is a separation constant. 

The solution to Equation (29) is given by the associated Lep^ndre function 

6(x)  =  Pj1(x) 

ß* » n(n+l) n»0, 1, 2»- (31) 
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Inuatlon (88) is Cftuchy's linear differential equatton which has the solution 

Rn(r).C3r»+C4 .-<»*« ( 

For the solution to be bounded at the origin,   C4 must be Identically ssero. 

Hence the solution to Equation (19) can be written as 

u(r, 9, 0) = ^(r2-l) +£ £ Tn P^Cx) |A, 
n=o ni=o ( 

cos m0+B _sin m0l .    (33) nm tun ( 

Applying boundary condition (15a) to Equation (31) yields 

^g(M) = f+f; £ nPj1(x)   |Anmco8m0 + Bam8inmj9{.      (34) 
n«l  m=o ( ; 

Now the arbitrary function (ß g(8, 0)) can be expanded in the following 

manner: 

^(9. 0) = £  £    ^ (x)   | 
n=o m=o { 

a     cos ra0 + b ^ sin m0 >. nr nm (35) 

The numerical values of the expansion coefficients a and b ._ can be T nm nm 
obtained by invoking the orthogonality relations between the tr4fonometric and 

associated Legendre functions. 

The normalization integrals for the associated Legendre functions are 

given by 

1. -.2 

cac = .ji^yj L . (38) /M (fftfi^Fsn 

and the values of a and b _ are given by Equations (37) through (38). nm nm 

B 
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.12 
aoo =^//      ^K*^«»^^ 

2ir 

nm " ' 5°^IS)T'' f^M/l efe « «.m» d« dx      (3«) 

»w = ^fj^n11 / KM I****) ** **">■* ■      (») 

The values of the unknown coefficients in Equation (34) are obtained by equating 
like terms in Equations (34) and (35). Therefore, it is seen that 

M =   3a. 
oo 

run 
nm n n=^   0 

(40) 

(41) 

B. nm 
nm 
n n=£   0 (42) 

Sines the values of a^ and bnm are determined in terms of the given 

normal boundary condition and simple quadratures, the solution of the u function 
is determined. It is also to be noted that the constant M (see Equations (8) and 
(12)) has been specified in terms of the normal bounds y condition. 

 i ■ L_ 
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SOLUTION •07•• THE v EQUATION 

Hie purpose of this section is to outline the solution of Equation (17a) 

subject to the boundary and Initial conditions as given by Equations (17b) and 

(17c). The solution is obtained by assuming that the function is separable and 

by proceeding in the usual manner. This attack yields the following results: 

v(r, S, 0, t)  = R(r)e(e)*(JÖ) e -X't (43) 

where 

*(0) 

e(x) ■ 

5 sin m 0 I 
I cos m 0 | 

K® 

m = 0, 1, 2 — n 

n = 0, 1, 2 — 

and 

+ FR   + i2    n(»-t-^) 
"     .2 

9  = 0 

(44) 

(45) 

Equation (46) is similar to Bessel's equation, and it can be put into the corre^l 
form by the following change of variables. 

Let, 

R(r) -   ^  . (47) 

Combining Equations (46) and (4?) yields 

«"      G x2_ jn+1/^ 2 G = 0 (48) 

10 
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The aoluüon to Equation (48) is given by the Beseel funcüon of order (n-1/2). 

G(r)=Jn+l/2<Xn^   ■ 

Combining (47) and (49) yields 

R (r) ITIT- r 
(50) 

Since the solution must meet the boundary condition (17b) which is independent 

of   6, jo, and t , the derivative of R(r) evaluated at r=-.l must be zero. 

R(l) dF 
Jn+l/2

(Xnir) 

 l/i = 0 (51) 
r = l 

It can be shown that Equation (51) is satisfied for the eigenvalues,   X    , 
given by 

"WV  = Vn+3/2<V (52) 

•»here 

Xni >   0 

n      .    0, 1, 2 — 

j    - i, a --.. 

The first ten eigenvalues X  .   are given for n equals one to fifteen in the 

appendix to this report.    Therefore, the solution to Equation (17a) that meets 
the normal boundary condition (17b) is given by 

OD    oo   n      J    , ,0(X .r) 
v(r, e, 0, t) = V V ^      0+1/2|.2

a)-i P^(x) 
n=o j=i   m=o r 

Cnmj COfi m* * ^nmj Binm* 
'^Jt 

(53) 

11 
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Hie numerical value of the coefficient« (T. and D    . can be evaluated 
from the initial conditions as glvsn by Equation {Itc). 

n=o j=l  m«o       r ' { f m 
Since sin m 0 , cos m 0, and pjfte) form orthogonal stts of function« and 
the Bessei functions are orthogonal with respect to the weight funcuou r, the 
values of Cnm. and D^^. can be evaluated in term« of quadratures. It can 

be shown that the value of the normalization integral for the fractional-order 

Bessei functions subjected to the eigenvalues of Equation (52) are given by 

/  r [Jn+l/2(Xnjr)J    ^     L     gJJ f- iLJ      . (55) 
^nj 

The values of Cnm. and D^. are determined to be 

|Cnmjl         ^ 
2 (2n+l) (n-m)! 

tr(n+m)!(X2
n3-n(n+l)rjn+1/2(X  )] 

3 -1 n ^ " 

The constant rr must be replaced by 2ir when C   ,  is evaluated. noj 

13 
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RESULTS 

The solution is finally obtained by combining the various parts. 

T.Mt + *f (r2-!)^ S^P^Cx) |A     cosmiS + B     8iam0 ! 
n=0 fflsK)      " (    »"' nm } 

(57) 

n=o m=o 1=1 l ? 

The values of the expansion coefficients M,   A    ,   B     . C    ,. D 
nm'     ma'    nmj'    nmj 

and Hie eigenvalues are given by Equations (40), (41), (42), (58), and (52), 

The results of Equation (57) can be simplified if the initial temperature 
distribution is assumed constant. 

In this case, the left-hand side of Equation (57) can be replaced by the tempera- 
ture excess (T-To), and the function (To-u) In the integrands of the expansion 
coefficients C. and D    . can be replaced by (-u). 

M the heat flux and temperature distribution are axlaily symmetric functions, 
the solution and boundary conditions are not dependent on the angle 0. This 

simplificatiof <   reflected by setting the value of m identically equal to zero 

in Equation (b,,   .* in addition to the above the initial temperature of the region 
is constant, further simplifications result in the solution. 

^3 
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DISCUSSION OF THE RESULTS 

Some commcmH may be made concerning the generality of the above solution. 

The develoymant in the proceeding sections has shown that the temperature 

distribution in a sphurical region subjected to a known heat flux at the boundary 
can be represented in terms of known functions and quadratures. It is also 

Important to note that the eigenvalues,   X , , of Equation (52) are not dependent 

on the form of the given normal heat flux distribution  Therefore, once the set 
of eigenvalues are determined, they are valid for all input functions g< 6, 0). 

The generality of the above solution is manifested by the expansion coefficients 

a      and b„m . The sign and numerical value of a_ Indicates the character nm nm oo 
of the problem that is being studied. If the value of a     is greater than zero, 

there is a net flux of energy into the region and one would expect the internal 

energy of the region to rise with time. This is confirmed by the first term in 
the solution. On the other hand, the numerical value of a      is negative if there 

is a net flux of energy leaving the region. Physically, the negative sign implies 

tl&t the internal energy of the region decreases with time. For a system in 
which the integral of the flux over the boundary is zero, one expects that the 

net internal energy of the region woiua remain constant. This phenomenon is 

also predicted by the solution, sinci? under the above assumption the value of 
a^ would be zero. Finally, if the heat flux is identically zero over the whole 

surface, all of the a.'s and b 's are zero, and the solution reduces to nm nm 
the temperature history of an insulated spherical region with an Initial tempera- 
ture distributiom 

"he above discussion implies that the temperature variation given by Equation (57) 
is valid for a wide range of normal boundary conditions that include net heating, 
cooling, or an Insulated boundary. 

14 
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APPENDIX 

FIRSTTFN EIGENVALUES FOR 
n EQUALS ONE TO FIFTEEN 

JO f^mST   SO   ^IGENVÄUiES   FO«*      ■   0<k<2««,..15 
W«0 ♦449343aS+Gl*7?25^68^*0MI0904t99+0a+l«066lt3+02*tT£g0731-W>2 2 

_ +?037t386+02+235I94e2+C5+«66662l0*02+29fl! » 57g-t.02-»329363«74-02  3 
X»t ~ ""•♦>^n«l,5«73*0 14-9S»403»*      01 ♦920^S377*6l + 124044«B+02-MM7924?*02 ♦ 
 +1 e742647»0^-»? 1 P9Q700+0?+P^^282?^ rt?H?8^31^9*0?+31352090+02   g 

H*?. ♦3342! ie6*0<'+T2a'»9351+ H +!6613a6!+02+13846109+02+^042904+02 6 
4g02213^9->-fl24g-'n904a4-<-02-»2fe^';26l2-H'?-<-297102qr>4'OP*V8648^2-»f)? 7 
^»ä- ♦«'5|40868+01+8c">837Süi-»-01*l l97274I+Ö2+I52443J6+02Ti846a|«ft+02 S 
<21666604+0?+2«B5f>079+02+28023875+02+TI 19121 1+0?4-^43l53S80+02    9 
#•4  " +9646691B+0i+98404477+<:i+1339':;?i65+02+!6609347*62+198624i4+02 10 
■f230B2797^0?»26g83g69-»Qg-»g947063a*02-»32fe4689i-<-02->-3gI.?0S4H-02  \\ 
M4^ " +67^5428+01 + 1 10702Oa+O2 + 14ft90964*0"2+T7947£73+02*2t23|P72+Og 12 
+244748?fi+oy+?7(S9''7i<J+02+30a9,S998+02+3408'S»597+02+37P«8628+02  ______ ' 3 

"^•6 +78511229+0J+12279339+02+15863226+02+192Ä27j3+02+2a!57erfcl+02 T« 
+2584608?+0?+?9n14347+02+323025l3+02+35506331   02+38699590+02 l^S 
M*7 ♦8>?-?4fi507+0 1 +1 3472027+02+1 711 75! 6+0?+20559426+02+2390644fl+02 t« 
♦ 271 99.-)gi4.f>P.».3n4575m-»0g^336921 734.n2-t-36909921 +02+401 1 5071+02    t? 
**8 +1 onlo363+n?+t4651260+02+I 8356320+02+21840002+02+25218701+02 IB 
+28536456+02+31 81 51 02402+35066761+02 f 3829891 7+02+41 51 6045+ri? 19 
Af»9 +11079406+02+15819226+02+19581887+02+23106579+02+26516699+02 20 
+2985^493+02+33158755+02+364277!6+02 + 39674621+02+42904926+02_       j 2i 
^10 +12143188+02+i6977545+0?+2Ö795968+02+2436O766+Ö2*273018B2+O2 22 
+ 31 1^980a+02+3.«489818+02+37776220+0?+4 1038202+02+44261551+02 23 

#ill ' +l3202624+02*iei27575+oi2+2;P99954+Ö2+25604Ö55+02+29075Sn+02 24 
+32468636+02+35n09372>-02+39113474+02+42390605+02+45647219+02 23 

N*\Z +14258325+02+192702«7+02+2J195006+Ö2+26837515+Ö2+3C339:'»6+02 26 
> 33757027+02*371 1 8471+0?+"'^440269+02+43732665+02+47002744+02 27 

'*«H3 ♦153ro8^+Ö2+e0406585+02+243a2040+02+28062'l 45+02+31593688+02 28 
+ 3'^035a7eJ+03.»?8417952+0?-»4i757424+ö2-»45065265-»-H2+4a349ögg+Ög 29 

A*T5 +»6360680+02+21537!15+02+25561d ^4+02+29^78732+02+32839777+02 30 
+ 363. 5993+02+39708552+02+43065663+02+46388927+02+49686105+02 31^ 

~tr*\5~ ♦rf4Ö§Ö4«+02+2266249w+02+26735166+02+30488006+02+34077861+02 32 
+3756B007+02+40990923+02+44365655+02+477'"    ,r9+02>5!o:5184+02 33 

X       given for n = 0, 1, 2, 15    q = 1, 2, 3, ..., 10 

where: 

A      3re the set of eigenvalue.? > 0 to the f&Uowing equation. 

nJn+l/2(V:= XT*iin+m{Xr^ 
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